The INADEQUATE [1] experiment was first reported in the literature in 1980 and was heralded as a unique means of establishing the C-C connectivity of organic molecules. However, it has found limited application mostly due to its inherently low sensitivity. Attempts to improve this pitfall were made in subsequent years. In 1996, the creation of the 1,1-ADEQUATE [2] experiment and its variants notably allowed the observation of the C-C bonds through their protons. Since these two experiments are the only means by which a scientist can directly observe the carbon skeleton of a molecule, they have been considered over the years to be the “holy grail” of NMR experiments for elucidation of the structures of organic compounds. Despite the emergence of new, more sensitive NMR hardware like cryogenically cooled probes, they nevertheless remain to be of very low sensitivity, requiring hours and days to run with the amounts of product normally isolated.
During the same period, computer-assisted structure elucidation (CASE) has evolved quite significantly [3-5] allowing scientists to elucidate large and complex structures using NMR data. The core of any CASE system is the structure generator engine, which will generate all the possible structures derived from the molecular formula and the imposed restrictions based on the observed NMR correlations. Modern structure generators are extremely efficient and can generate millions of isomeric structures within minutes. After the structures are generated, they are ranked, usually based on the agreement between the predicted 13C chemical shifts and those observed experimentally.
Taking the above into account, in this poster, we investigate how relevant experiments like INADEQUATE and ADEQUATE truly are, given the existence of powerful tools like CASE. To do this, we analysed a series of published examples in which (IN)ADEQUATE information was stated as being vitally necessary for unambiguous structure elucidation. We looked to determine whether using HMBC and COSY data within a CASE system could elucidate the structure(s) in a reasonable amount of time without using (IN)ADEQUATE spectra. We found that using only HMBC and COSY allowed us to get the correct solution in a reasonable time without utilizing time-consuming experiments in a series of examples. However, we also found that in most cases of large hydrogen deficient molecules, structure elucidation requires (IN)ADEQUATE spectra, and CASE only facilitates the structure elucidation.
We will be presenting different examples to illustrate the observations. Moreover, we will be showing examples where even though the correct structure has been generated, it was not possible to clearly identify it as the correct structure because others existed that were ranked similarly. We will be discussing methods to resolve these ambiguities and get the correct result without necessarily involving low-sensitivity experiments.
1. Bax A, Freeman R, Kempsell SP., J Am Chem Soc. 1980;102:4849-4851.
2. B. Reif, M. Kock, R. Kerssebaum, H. Kang, W. Fenical, C. Griesinger, JMR ser-A 1996, 118, 282-285
3. M. Elyashberg, D. Argyropoulos, eMagRes, 2019, Vol 8: 239–254. DOI 10.1002/9780470034590.emrstm1618
4. M. Elyashberg, D. Argyropoulos, Mag. Reson. Chem., https://doi.org/10.1002/mrc.5115
5. M.E. Elyashberg, A.J. Williams. “Computer-based Structure Elucidation from Spectral Data. The Art of Solving Problems”, Springer, Heidelberg, 2015, 454 p